O(1) a beautiful sorting

A constant runtime sorting algorithm
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Enumeration Sort

e Calculate ‘rank’ of each element
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How long will this take?

* Big O Notation

* Gives you arough idea of how different algorithms compare

* For each element, compare to each element
* N? comparisons means O(N?) runtime



Can we do better?

* Don’t compare each element to every other element

* A few different options:

* Merge sort
 Quicksort
* Heapsort

* For each of N elements, logN comparisons

* O(N logN)
* 18 comparisons compared to 42



Parallelism

* Consider simplest parallel computer
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Parallel Enumeration

* Each processor computes one rank
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Parallel Enumeration

* Each processor computes one rank
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Parallel Enumeration

* We are doing NxN comparisons, but N at the same time
* O(N)

e Drawback: needs N cores



So far

Runtime

Number of objects, N



So far O(N?)

e O(N?)
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So far O(N?)

e O(N?) O(NlogN)
* O(NlogN)
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So far

e O(N?)
* O(NlogN)
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Constant runtime?

* A processor for each rank

Rank



Constant runtime?

* A processor for each rank comparison

Rank



Parallel Enumeration

* Each processor computes one comparison




Constant runtime!

* You have NxN comparisons, but you do N? at the same time
* O(1) runtime!

* Caveats:
* |gnores “message passing costs”
* Needs N? processes



Question Time

Roughly how many numbers could we sort with our parallel
algorithm, using every core of cuillin’s worker nodes?

a) 10
b) 100
c) 1000



Question Time

Roughly how many numbers could we sort with our parallel
algorithm, using every core of cuillin’s worker nodes?

a) 10-1692 cores means 41 numbers
b) 100
c) 1000



Conclusion

* You can make enough assumptions and pick any metric to make
something sound better than it is.

* Inherent assumptions: Enough cores, perfect system, ...
* |f something sounds too good to be true, itis.
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