O(1) a beautiful sorting

A constant runtime sorting algorithm

Sorting

Input

1 3 4 4) 7 9 output

Enumeration Sort

e Calculate ‘rank’ of each element

Ol lWIJ|—-|O

Rank

\ }
|

Need atie-break

How long will this take?

* Big O Notation

* Gives you arough idea of how different algorithms compare

* For each element, compare to each element
* N? comparisons means O(N?) runtime

Can we do better?

* Don’t compare each element to every other element

* A few different options:

* Merge sort
 Quicksort
* Heapsort

* For each of N elements, logN comparisons

* O(N logN)
* 18 comparisons compared to 42

Parallelism

* Consider simplest parallel computer

Processor
Processor TTIIT

LLILL Processor

Processor

Memory

1innnn
Processor Processor Processor

Parallel Enumeration

* Each processor computes one rank

Memory
x<4 x<4 x<9

Parallel Enumeration

* Each processor computes one rank

|7

Ol lWIJ|—-|O

Rank

Parallel Enumeration

* We are doing NxN comparisons, but N at the same time
* O(N)

e Drawback: needs N cores

So far

Runtime

Number of objects, N

So far O(N?)

e O(N?)

Runtime

Number of objects, N

So far O(N?)

e O(N?) O(NlogN)
* O(NlogN)

Runtime

Number of objects, N

So far

e O(N?)
* O(NlogN)
* O(N)

Runtime

Number of objects, N

So far

=

—
)

Runtime

Number of objects, N

Constant runtime?

* A processor for each rank

Rank

Constant runtime?

* A processor for each rank comparison

Rank

Parallel Enumeration

* Each processor computes one comparison

Constant runtime!

* You have NxN comparisons, but you do N? at the same time
* O(1) runtime!

* Caveats:
* |gnores “message passing costs”
* Needs N? processes

Question Time

Roughly how many numbers could we sort with our parallel
algorithm, using every core of cuillin’s worker nodes?

a) 10
b) 100
c) 1000

Question Time

Roughly how many numbers could we sort with our parallel
algorithm, using every core of cuillin’s worker nodes?

a) 10-1692 cores means 41 numbers
b) 100
c) 1000

Conclusion

* You can make enough assumptions and pick any metric to make
something sound better than it is.

* Inherent assumptions: Enough cores, perfect system, ...
* |f something sounds too good to be true, itis.

	Slide 1: O(1) a beautiful sorting
	Slide 2: Sorting
	Slide 3: Enumeration Sort
	Slide 4: How long will this take?
	Slide 5: Can we do better?
	Slide 6: Parallelism
	Slide 7: Parallel Enumeration
	Slide 8: Parallel Enumeration
	Slide 9: Parallel Enumeration
	Slide 10: So far
	Slide 11: So far
	Slide 12: So far
	Slide 13: So far
	Slide 14: So far
	Slide 15: Constant runtime?
	Slide 16: Constant runtime?
	Slide 17: Parallel Enumeration
	Slide 18: Constant runtime!
	Slide 19: Question Time
	Slide 20: Question Time
	Slide 21: Conclusion

